UCL INM biweekly meeting

Claire Delplancke

University of Bath

October 11th 2020

Part of **PET**++ **project** with Matthias Ehrhardt (Bath), Carola-Bibiane Schönlieb and Jonas Latz (Cambridge). **Goal:** improve (fast) PET image reconstruction in order to benefit clinical diagnosis.

PET reconstruction. Statistical model:

> $d \sim \text{Poisson}(Ax + b)$ A : attenuation + ray-transform b : randoms + scatters

Inverse problem:

$$\min_{x \in X} \underbrace{\mathsf{KL}(d, Ax + b)}_{\mathsf{data fit}} + \underbrace{\mathsf{R}(x)}_{\mathsf{prior}}$$

PET reconstruction. Statistical model:

d ~ Poisson(Ax + b)
A : attenuation + ray-transform
b : randoms + scatters

Inverse problem:

$$\min_{x \in X} \underbrace{\mathsf{KL}(d, Ax + b)}_{\mathsf{data fit}} + \underbrace{\mathsf{R}(x)}_{\mathsf{prior}}$$

TV regularization: $R(x) = \alpha \|\nabla x\|_1$ Guided TV regularization: $R(x) = \alpha \|M\nabla x\|_1$. where *M* incorporates information from MR or CT image.

Influence of non-smooth priors

Figure: From Faster PET Reconstruction with Non-Smooth Priors by Randomization and Preconditioning, M. J. Ehrhardt, P. Markiewicz and C.-B. Schönlieb, Physics in Medicine and Biology, 2019

C. Delplancke (U. of Bath)

UCL INM meeting

$\min_{x \in X} \mathsf{KL}(d, Ax + b) + \alpha \| M \nabla x \|_{1,2}$

Forward projection A and back-projection A^* have high computational cost.

OSEM

- Ordered Subsets Expecation Minimization: $A = (A_1, \ldots, A_n)$
- No prior
- No convergence guarantee

PDHG

- No subsets
- Prior
- Convergence guarantee

SPDHG: Best of two worlds

$$\min_{x\in X}F(Ax)+G(x)$$

with F, G convex and A linear.

Introduce the **convex conjugate** and **proximal operator** of a convex function F:

$$F^*(y) = \sup_{z \in \mathcal{Y}} \langle z, y \rangle - F(z)$$

 $\operatorname{prox}_F^{\tau}(y) = \arg\min_{z \in \mathcal{Y}} \frac{1}{2\tau} ||z - y||^2 + F(z).$

PDHG

$$\min_{x\in X} F(Ax) + G(x) = \min_{x\in X} \sup_{y\in Y} \langle Ax, y \rangle - F^*(y) + G(x).$$

Primal-Dual Hybrid Gradient (PDHG) or Chambolle-Pock algorithm: Input: initialization point $x \in \mathcal{X}, y \in \mathcal{Y}$; step parameters σ, τ .

Initialize
$$z = \overline{z} = P^T y$$
.

Iterate

-
$$x = \operatorname{prox}_{G}^{\tau}(x - \tau \overline{z})$$

- $y^{+} = \operatorname{prox}_{F^{*}}^{\sigma}(y + \sigma Ax)$
- $\Delta z = A^{T}(y^{+} - y)$
- $z = z + \Delta z, y = y^{+}$
- $\overline{z} = z + \Delta z.$

Convergence condition: $\|\sigma^{1/2}A\tau^{1/2}\| < 1.$

Assume we have a **separability** property:

$$F(Ax) = \sum_{i=1}^{n} F_i(A_i x).$$

For example,

$$\mathsf{KL}(d, Ax + b) = \sum_{i=1}^{n} \mathsf{KL}(d_i, A_ix + b_i),$$

where the forward projection is divided into subsets $A = (A_1, \ldots, A_n)$.

Stochastic PDHG

Stochastic PDHG

Input: initialization point $x \in \mathcal{X}, y \in \mathcal{Y}$; step parameters $\sigma_i, 1 \leq i \leq n, \tau$.

Initialize
$$z = \overline{z} = P^T y$$
.

Iterate

-
$$x = \operatorname{prox}_{G}^{\tau}(x - \tau \bar{z})$$

- Select a subset i with probability p_i

$$- y_i^+ = \operatorname{prox}_{F_i^*}^{\sigma_i}(y_i + \sigma_i A_i x)$$

$$- \Delta z = A_i^T (y_i^+ - y_i)$$

$$- z = z + \Delta z, \ y_i = y_i^+$$

$$- \overline{z} = z + \frac{1}{p_i} \Delta z.$$

Recent developments: improving SPDHG step-size

Joint work with J. Latz, P. J. Markiewicz, C.-B. Schönlieb, M. J. Ehrhardt.

Convergence condition (*) form *Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications*, by A. Chambolle, M. J. Ehrhardt, P. Richtárik and C.-B. Schönlieb, SIAM J. Optim, 2018:

There exists (v_i) such that for all $y \in Y$,

$$\mathbb{E}\left\|\sum_{i\in\mathbb{S}} (\sigma_i^{1/2} A_i \tau^{1/2})^* y_i\right\|^2 \leq \sum_{i=1}^n p_i v_i \|z_i\|^2,$$

and for all i, $v_i < p_i$.

Alternative convergence condition (**): $\|\sigma^{1/2}A\tau^{1/2}\| < 1$ and (**) \leftarrow (*).

For pre-conditioned step-sizes, the same kind of formulas exist.

C. Delplancke (U. of Bath)

UCL INM meeting

Dataset: real data corresponding to the last 10 minutes of a brain amyloid scan with florbetapir tracer with Siemens Biograph mMR scanner. Numerical experiments: open-source packages NiftyPET and ODL.

Figure: PSNR evolution for old and new step-sizes. New step-size speeds up reconstruction.

SPDHG step-sizes: second advance

Admissible step-sizes read as, for a positive γ :

$$\sigma_i = \frac{1}{\gamma \|A_i\|}, \quad \tau = \frac{\gamma}{\sum_i \|A_i\|}.$$

How to calibrate γ , which is commonly fixed to 1?

SPDHG step-sizes: second advance

Admissible step-sizes read as, for a positive γ :

$$\sigma_i = rac{1}{\gamma \|A_i\|}, \quad \tau = rac{\gamma}{\sum_i \|A_i\|}.$$

How to calibrate γ , which is commonly fixed to 1?

Figure: PSNR evolution for different values of γ . Fastest reconstruction is obtained with same value $\gamma = 0.1$ for both datasets.

C. Delplancke (U. of Bath)	UCL INM meeting	October 11th 2020	10/13
----------------------------	-----------------	-------------------	-------

Calibrating the trade-off between primal and dual convergence

(a) Reference	(b) $\gamma = 0.1$	(c) $\gamma = 1.0$
$PSNR = +\infty$	PSNR = 37	PSNR = 29

Figure: PET reconstruction. SPDHG result with calibrated $\gamma = 0.1$ looks closer to reference than with $\gamma = 1$ after 20 epochs.

ODL: https://github.com/odlgroup/odl/tree/master/odl/ contrib/solvers/spdhg

CIL: https://github.com/vais-ral/CCPi-Framework/blob/master/ Wrappers/Python/ccpi/optimisation/algorithms/SPDHG.py

https://github.com/vais-ral/CIL-Demos/blob/master/ Tomography/Simulated/SingleChannel/PDHG_vs_SPDHG.py

- Test on PET-CT data from pituitary gland study: collaboration of PET++ group with Addenbrookes' hospital
- Motion reconstruction: subsetting on gates, not only on subsets. Joint work with Kris Thielemans, Richard Brown, Evangelos Papoutsellis, Edoardo Pascoa, Christoph Kolbitsch...